miércoles, 29 de febrero de 2012

BIOLOGIA:LAS PROTINAS IRVIN SANCHEZ

¿COMO SE FORMAN LAS PROTEINAS?
Según su forma  de la proteína
Fibrosas: presentan cadenas polipeptídicas largas y una estructura secundaria atípica. Son insolubles en agua y en disoluciones acuosas. Algunos ejemplos de éstas son queratina, colágeno y fibrina
Globulares: se caracterizan por doblar sus cadenas en una forma esférica apretada o compacta dejando grupos hidrófobos hacia adentro de la proteína y grupos hidrófilos hacia afuera, lo que hace que sean solubles en disolventes polares como el agua. La mayoría de las enzimas, anticuerpos, algunas hormonas y proteínas de transporte, son ejemplos de proteínas globulares.
Mixtas: posee una parte fibrilar (comúnmente en el centro de la proteína) y otra parte globular (en los extremos).
Según su composición química
Simples: su hidrólisis sólo produce aminoácidos. Ejemplos de estas son la insulina y el colágeno (globulares y fibrosas). A su vez, las proteínas se clasifican en[3] :
a) Escleroproteínas: Son esencialmente insolubles, fibrosas, con un grado de cristalinidad relativamente alto. Son resistentes a la acción de muchas enzimas y desempeñan funciones estructurales en el reino animal. Los colágenos constituyen el principal agente de unión en el hueso, el cartílago y el tejido conectivo. Otros ejemplos son la queratina, la fibroína y la sericina.
b) Esferoproteínas: Contienen moléculas de forma más o menos esférica. Se subdividen en cinco clases según sus solubilidad:
I.-Albúminas: Solubles en agua y soluciones salinas diluidas. Ejemplos: la ovoalbúmina y la lactalbúmina.
II.-Globulinas: Insolubles en agua pero solubles en soluciones salinas. Ejemplos: miosina, inmunoglobulinas, lactoglobulinas, glicinina y araquina.
III.- Glutelinas: Insolubles en agua o soluciones salinas, pero solubles en medios ácidos o básicos. Ejemplos: oricenina y las glutelinas del trigo.
IV.- Prolaminas: Solubles en etanol al 50%-80%. Ejemplos: gliadina del trigo y zeína del maíz.
V.- Histonas son solubles en medios ácidos.
Conjugadas o heteroproteínas: su hidrólisis produce aminoácidos y otras sustancias no proteicas con un grupo prostético.
Fuentes de proteínas
Las fuentes dietéticas de proteínas incluyen carne, huevos, soya, granos, leguminosas y productos lácteos tales como queso o yogurt. Las fuentes animales de proteínas poseen los 20 aminoácidos. Las fuentes vegetales son deficientes en aminoácidos y se dice que sus proteínas son incompletas. Por ejemplo, la mayoría de las leguminosas típicamente carecen de cuatro aminoácidos incluyendo el aminoácido esencial metionina, mientras los granos carecen de dos, tres o cuatro aminoácidos incluyendo el aminoácido esencial lisina.
Calidad proteica
Las diferentes proteínas tienen diferentes niveles de familia biológica para el cuerpo humano. Muchos alimentos han sido introducidos para medir la tasa de utilización y retención de proteínas en humanos. Éstos incluyen valor biológico, NPU (Net Protein Utilization), NPR (Cociente Proteico Neto) y PDCAAS (Protein Digestibility Corrected Amino Acids Score), la cual fue desarrollado por la FDA mejorando el PER (Protein Efficiency Ratio). Estos métodos examinan qué proteínas son más eficientemente usadas por el organismo. En general, éstos concluyeron que las proteínas animales que contienen todos los aminoácidos esenciales (leche, huevos, carne) y la proteína de soya son las más valiosas para el organismo.



 

BIOLOGIA :EL ADN IRVIN SANCHEZ

¿QUE ES EL ADN Y POR QUE ES UNA MOLECULA TAN IMPORTANTE EN LOS SERES VIVOS?
El ácido desoxirribonucleico, frecuentemente abreviado como ADN (y también DNA, del inglés deoxyribonucleic acid), es un tipo de ácido nucleico, una macromolécula que forma parte de todas las células. Contiene la información genética usada en el desarrollo y el funcionamiento de los organismos vivos conocidos y de algunos virus, y es responsable de su transmisión hereditaria.
Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un poli nucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adeninaA, timinaT, citosinaC o guaninaG) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.
Para que la información que contiene el ADN pueda ser utilizada por la maquinaria celular, debe copiarse en primer lugar en unos trenes de nucleótidos, más cortos y con unas unidades diferentes, llamados ARN. Las moléculas de ARN se copian exactamente del ADN mediante un proceso denominado transcripción. Una vez procesadas en el núcleo celular, las moléculas de ARN pueden salir al citoplasma para su utilización posterior. La información contenida en el ARN se interpreta usando el código genético, que especifica la secuencia de los aminoácidos de las proteínas, según una correspondencia de un triplete de nucleótidos (codón) para cada aminoácido. Esto es, la información genética (esencialmente: qué proteínas se van a producir en cada momento del ciclo de vida de una célula) se halla codificada en las secuencias de nucleótidos del ADN y debe traducirse para poder funcionar. Tal traducción se realiza usando el código genético a modo de diccionario. El diccionario "secuencia de nucleótido-secuencia de aminoácidos" permite el ensamblado de largas cadenas de aminoácidos (las proteínas) en el citoplasma de la célula. Por ejemplo, en el caso de la secuencia de ADN indicada antes (ATGCTAGATCGC...), la ARN polimerasa utilizaría como molde la cadena complementaria de dicha secuencia de ADN (que sería TAC-GAT-CTA-GCG-...) para transcribir una molécula de ARN m que se leería AUG-CUA-GAU-CGC-... ; el ARNm resultante, utilizando el código genético, se traduciría como la secuencia de aminoácidos metionina-leucina-ácido aspártico-arginina-...
Las secuencias de ADN que constituyen la unidad fundamental, física y funcional de la herencia se denominan genes. Cada gen contiene una parte que se transcribe a ARN y otra que se encarga de definir cuándo y dónde deben expresarse. La información contenida en los genes (genética) se emplea para generar ARN y proteínas, que son los componentes básicos de las células, los "ladrillos" que se utilizan para la construcción de los orgánulos u organelos celulares, entre otras funciones.
Dentro de las células, el ADN está organizado en estructuras llamadas cromosomas que, durante el ciclo celular, se duplican antes de que la célula se divida. Los organismos eucariotas (por ejemplo, animales, plantas, y hongos) almacenan la mayor parte de su ADN dentro del núcleo celular y una mínima parte en elementos celulares llamados mitocondrias, y en los plastos y los centros organizadores de microtúbulos o centríolos, en caso de tenerlos; los organismos procariotas (bacterias y arqueas) lo almacenan en el citoplasma de la célula, y, por último, los virus ADN lo hacen en el interior de la cápsida de naturaleza proteica. Existen multitud de proteínas, como por ejemplo las histonas y los factores de transcripción, que se unen al ADN dotándolo de una estructura tridimensional determinada y regulando su expresión. Los factores de transcripción reconocen secuencias reguladoras del ADN y especifican la pauta de transcripción de los genes. El material genético completo de una dotación cromosómica se denomina genoma y, con pequeñas variaciones, es característico de cada especie.




BIOLOGIA:EL ARN IRVIN SANCHEZ

¿QUE ES EL ARN Y CUANTOS TIPOS EXISTEN?
El ARN mensajero (ARNm) es el tipo de ARN que lleva la información del ADN a los ribosomas, el lugar de la síntesis de proteínas. La secuencia de nucleótidos del ARNm determina la secuencia de aminoácidos de la proteína.[21] Por ello, el ARNm es denominado ARN codificante.
No obstante, muchos ARN no codifican proteínas, y reciben el nombre de ARN no codificantes; se originan a partir de genes propios (genes ARN), o son los intrones rechazados durante el proceso de splicing. Son ARN no codificantes el ARN de transferencia (ARNt) y el ARN ribosómico (ARNr), que son elementos fundamentales en el proceso de traducción, y diversos tipos de ARN reguladores.[22]
Ciertos ARN no codificantes, denominados ribozimas, son capaces de catalizar reacciones químicas como cortar y unir otras moléculas de ARN,[23] o formar enlaces peptídicos entre aminoácidos en el ribosoma durante la síntesis de proteínas.[24]
ARN implicados en la síntesis de proteínas
Ribosoma 50S mostrando el ARNr (amarillo), las proteínas (azul) y el centro activo, la adenina 2486 (rojo).
  • ARN mensajero. El ARN mensajero (ARNm o RNAm) lleva la información sobre la secuencia de aminoácidos de la proteína desde el ADN, lugar en que está inscrita, hasta el ribosoma, lugar en que se sintetizan las proteínas de la célula. Es, por tanto, una molécula intermediaria entre el ADN y la proteína y el apelativo de "mensajero" es del todo descriptivo. En eucariotas, el ARNm se sintetiza en el nucleoplasma del núcleo celular y de allí accede al citosol, donde se hallan los ribosomas, a través de los poros de la envoltura nuclear.
  • ARN de transferencia. Los ARN de transferencia (ARNt o tRNA) son cortos polímeros de unos 80 nucleótidos que transfiere un aminoácido específico al polipéptido en crecimiento; se unen a lugares específicos del ribosoma durante la traducción. Tienen un sitio específico para la fijación del aminoácido (extremo 3') y un anticodón formado por un triplete de nucleótidos que se une al codón complementario del ARNm mediante puentes de hidrógeno.[22]
  • ARN ribosómico. El ARN ribosómico (ARNr o RNAr) se halla combinado con proteínas para formar los ribosomas, donde representa unas 2/3 partes de los mismos. En procariotas, la subunidad mayor del ribosoma contiene dos moléculas de ARNr y la subunidad menor, una. En los eucariotas, la subunidad mayor contiene tres moléculas de ARNr y la menor, una. En ambos casos, sobre el armazón constituido por los ARNr se asocian proteínas específicas. El ARNr es muy abundante y representa el 80% del ARN hallado en el citoplasma de las células eucariotas.[25] Los ARN ribosómicos son el componente catalítico de los ribosomas; se encargan de crear los enlaces peptídicos entre los aminoácidos del polipéptido en formación durante la síntesis de proteínas; actúan, pues, como ribozimas.
ARN reguladores
Muchos tipos de ARN regulan la expresión génica gracias a que son complementarios de regiones específicas del ARNm o de genes del ADN. .
  • ARN de interferencia. Los ARN interferentes (ARNi o iRNA) son moléculas de ARN que suprimen la expresión de genes específicos mediante mecanismos conocidos globalmente como ribointerferencia o interferencia por ARN. Los ARN interferentes son moléculas pequeñas (de 20 a 25 nucléotidos) que se generan por fragmentación de precursores más largos. Se pueden clasificar en tres grandes grupos:[26]
    • Micro ARN. Los micro ARN (miARN o RNAmi) son cadenas cortas de 21 ó 22 nucleótidos hallados en células eucariotas que se generan a partir de precursores específicos codificados en el genoma. Al transcribirse, se pliegan en horquillas intramoleculares y luego se unen a enzimas formando un complejo efector que puede bloquear la traducción del ARNm o acelerar su degradación comenzando por la eliminación enzimática de la cola poli A.[27] [28]
    • ARN interferente pequeño. Los ARN interferentes pequeño (ARNip o siARN), formados por 20-25 nucleótidos, se producen con frecuencia por rotura de ARN virales, pero pueden ser también de origen endógeno.[29] [30] Tras la transcripción se ensambla en un complejo proteico denominado RISC (RNA-induced silencing complex) que identifica el ARNm complementario que es cortado en dos mitades que son degradadas por la maquinaria celular, bloquean así la expresión del gen.[31] [32] [33]
    • ARN asociados a Piwi.[34] Los ARN asociados a Piwi son cadenas de 29-30 nucleótidos, propias de animales; se generan a partir de precursores largos monocatenarios, en un proceso que es independiente de Drosha y Dicer. Estos ARN pequeños se asocian con una subfamilia de las proteínas "Argonauta" denominada proteínas Piwi. Son activos las células de la línea germinal; se cree que son un sistema defensivo contra los transposones y que juegan algún papel en la gametogénesis.[35] [36]
  • ARN antisentido. Un ARN antisentido es la hebra complementaria (no codificadora) de un hebra ARNm
  •  (codificadora). La mayoría inhiben genes, pero unos pocos activan la transcripción.[37] El ARN antisentido se aparea con su ARNm complementario formando una molécula de doble hebra que no puede traducirse y es degradada enzimáticamente.[38] La introducción de un transgen codificante para un ARNm antisentido es una técnica usada para bloquear la expresión de un gen de interés. Un mARN antisentido marcado radioactivamente puede usarse para mostrar el nivel de transcripción de genes en varios tipos de células. Algunos tipos estructurales antisentidos son experimentales, ya que se usan como terapia antisentido.
  • Riboswitch. Un riboswitch es una parte del ARNm  (ácido ribonucleico mensajero) al cual pueden unirse pequeñas moléculas que afectan la actividad del gen.[41] [42] [43] Por tanto, un ARNm que contenga un riboswitch está directamente implicado en la regulación de su propia actividad que depende de la presencia o ausencia de la molécula señalizadora. Tales riboswitchs se hallan en la región no traducida 5' (5'-UTR), situada antes del codón de inicio (AUG), y/o en la región no traducida 3' (3'-UTR), también llamada secuancia de arrastre,[14] situada entre el codón de terminación (UAG, UAA o UGA) y la cola poli A.


ARN con actividad catalítica
Transformación de uridina en pseudouridina, una modificación común del ARN.
  • Ribozimas. El ARN puede actuar como biocatalizador. Ciertos ARN se asocian a proteínas formando ribonucleoproteínas y se ha comprobado que es la subunidad de ARN la que lleva a cabo las reacciones catalíticas; estos ARN realizan las reacciones in vitro en ausencia de proteína. Se conocen cinco tipos de ribozimas; tres de ellos llevan a cabo reacciones de automodificación, como eliminación de intrones o autocorte, mientras que los otros (ribonucleasa P y ARN ribosómico) actúan sobre substratos distintos.[14] Así, la ribonucleasa P corta un ARN precursor en moléculas de ARNt,[44] mientras que el ARN ribosómico realiza el enlace peptídico durante la síntesis proteica ribosomal.
  • Espliceosoma. Los intrones son separados del pre-ARNm durante el proceso conocido como splicing por los espliceosomas, que contienen numerosos ARN pequeños nucleares (ARNpn o snRNA).[45] En otros casos, los propios intrones actúan como ribozimas y se separan a si mismos de los exones.[46]
  • ARN pequeño nucleolar. Los ARN pequeños nucleolares (ARNpno o snoRNA), hallados en el nucléolo y en los cuerpos de Cajal, dirigen la modificación de nucleótidos de otros ARN;[22] el proceso consiste en transformar alguna de las cuatro bases nitrogenadas típicas (A, C, U, G) en otras. Los ARNpno se asocian con enzimas y los guían apareándose con secuencias específicas del ARN al que modificarán. Los ARNr y los ARNt contienen muchos nucleótidos modificados.[47] [48]
ARN mitocondrial
La mitocondrias tienen su propio aparato de síntesis proteica, que incluye ARNr (en los ribosomas), ARNt y ARNm. Los ARN mitocondriales (ARNmt o mtARN) representan el 4% del ARN celular total. Son transcritos por una ARN polimerasa mitocondrial específica.[14]














BIOLOGIA_IRVIN SANCHEZ SINDROME DE DOWN.

Síndrome de Down
Causas
En la mayoría de los casos, el síndrome de Down ocurre cuando hay una copia extra del cromosoma 21. Esta forma de síndrome de Down se denomina trisomía 21. El cromosoma extra causa problemas con la forma como se desarrolla el cuerpo y el cerebro.
El síndrome de Down es la causa única más común de anomalías congénitas en los seres humanos.
Síntomas
Los síntomas del síndrome de Down varían de una persona a otra y pueden ir de leves a graves. Sin embargo, los niños con síndrome de Down tienen una apariencia característica ampliamente reconocida.
La cabeza puede ser más pequeña de lo normal y anormalmente formada. Por ejemplo, la cabeza puede ser redonda con un área plana en la parte de atrás. La esquina interna de los ojos puede ser redondeada en lugar de puntiaguda.
Los signos físicos comunes abarcan:
  • Disminución del tono muscular al nacer
  • Exceso de piel en la nuca
  • Nariz achatada
  • Uniones separadas entre los huesos del cráneo (suturas)
  • Pliegue único en la palma de la mano
  • Orejas pequeñas
  • Boca pequeña
  • Ojos inclinados hacia arriba
  • Manos cortas y anchas con dedos cortos
  • Manchas blancas en la parte coloreada del ojo (manchas de Brushfield)
En el síndrome de Down, el desarrollo físico es a menudo más lento de lo normal y la mayoría de los niños que lo padecen nunca alcanzan su estatura adulta promedio.
Los niños también pueden tener retraso en el desarrollo mental y social. Los problemas comunes pueden abarcar:
  • Comportamiento impulsivo
  • Deficiencia en la capacidad de discernimiento
  • Período de atención corto
  • Aprendizaje lento
A medida que los niños con el síndrome de Down crecen y se vuelven conscientes de sus limitaciones, también pueden sentir frustración e ira.
Muchas afecciones diferentes se observan en los bebés nacidos con síndrome de Down, incluyendo:
  • Anomalías congénitas que comprometen el corazón, como la comunicación interauricular o la comunicación interventricular
  • Se puede observar demencia
  • Problemas de los ojos como cataratas (la mayoría de los niños con síndrome de Down necesitan gafas)
  • Vómito temprano y profuso, que puede ser un signo de bloqueo gastrointestinal, como atresia esofágica y atresia duodenal
  • Problemas auditivos, probablemente causados por infecciones regulares del oído
  • Problemas de la cadera y riesgo de dislocación
  • Problemas prolongados (crónicos) de estreñimiento
  • Apnea del sueño (debido a que la boca, la garganta y las vías respiratorias son estrechas en los niños con síndrome de Down)
  • Dientes que aparecen más tarde de lo normal y en un lugar que puede causar problemas con la masticación
  • Tiroides hipoactiva (hipotiroidismo)
Pruebas y exámenes
Un médico con frecuencia puede hacer un diagnóstico inicial del síndrome de Down al nacer con base en la apariencia del bebé. Puede igualmente escuchar un soplo cardíaco al auscultar el pecho con un estetoscopio.
Se puede hacer un examen de sangre para verificar si hay un cromosoma extra y confirmar el diagnóstico. Ver: estudios cromosómicos
Otros exámenes que se pueden llevar a cabo son:
  • Ecocardiografía para verificar si hay defectos cardíacos (por lo general se hacen poco después de nacer)
  • ECG
  • Radiografía de tórax y tracto gastrointestinal
Es necesario examinar minuciosamente a las personas con el síndrome de Down por si hay ciertas afecciones. Se deben hacer:
  • Examen de los ojos cada año durante la niñez
  • Audiometrías cada 6 a 12 meses, dependiendo de la edad
  • Exámenes dentales cada 6 meses
  • Radiografías de la columna cervical o superior entre las edades de 3 a 5 años
  • Citologías y exámenes pélvicos comenzando durante la pubertad o hacia la edad de 21 años
  • Exámenes de tiroides cada 12 meses